Question

In a triangle $$ABC, a, b, c$$   are the lengths of its sides and $$A, B, C$$  are the angles of triangle $$ABC.$$  The correct relation is given by

A. $$\left( {b - c} \right)\sin \left( {\frac{{B - C}}{2}} \right) = a\cos \frac{A}{2}$$
B. $$\left( {b - c} \right)\cos \left( {\frac{A}{2}} \right) = a\sin \frac{{B - C}}{2}$$  
C. $$\left( {b + c} \right)\sin \left( {\frac{{B + C}}{2}} \right) = a\cos \frac{A}{2}$$
D. $$\left( {b - c} \right)\cos \left( {\frac{A}{2}} \right) = 2a\sin \frac{{B + C}}{2}$$
Answer :   $$\left( {b - c} \right)\cos \left( {\frac{A}{2}} \right) = a\sin \frac{{B - C}}{2}$$
Solution :
Let us consider $$\frac{{b - c}}{a},$$   which is involved in each of the these options.
$$\eqalign{ & \frac{{b - c}}{a} = \frac{{\sin B - \sin C}}{{\sin A}} \cr & = \frac{{2\cos \left( {\frac{{B + C}}{2}} \right)\sin \left( {\frac{{B - C}}{2}} \right)}}{{2\sin \frac{A}{2}\cos \frac{A}{2}}} \cr & = \frac{{\sin \frac{A}{2}\sin \left( {\frac{{B - C}}{2}} \right)}}{{\sin \frac{A}{2}\cos \frac{A}{2}}} \cr & = \frac{{\sin \left( {\frac{{B - C}}{2}} \right)}}{{\cos \frac{A}{2}}} \cr & \therefore \,\,\left( {b - c} \right)\cos \frac{A}{2} = a\sin \left( {\frac{{B - C}}{2}} \right) \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section