Question

In which of the following reactions, standard reaction entropy changes $$\left( {\Delta {S^ \circ }} \right)$$  is positive and standard Gibbs energy change $$\left( {\Delta {G^ \circ }} \right)$$  decreases sharply with increasing temperature?

A. $$C\left( {{\text{graphite}}} \right) + \frac{1}{2}{O_2}\left( g \right) \to CO\left( g \right)$$  
B. $$CO\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \to C{O_2}\left( g \right)$$
C. $$Mg\left( s \right) + \frac{1}{2}{O_2}\left( g \right) \to MgO\left( s \right)$$
D. $$\frac{1}{2}C\left( {{\text{graphite}}} \right) + \frac{1}{2}{O_2}\left( g \right) \to \frac{1}{2}C{O_2}\left( g \right)$$
Answer :   $$C\left( {{\text{graphite}}} \right) + \frac{1}{2}{O_2}\left( g \right) \to CO\left( g \right)$$
Solution :
Among the given reactions only in the case of
$$C\left( {{\text{graphite}}} \right) + \frac{1}{2}{O_2}\left( g \right) \to CO\left( g \right)$$
entropy increases because randomness (disorder) increases. Thus, standard entropy change $$\left( {\Delta {S^ \circ }} \right)$$  is positive. Moreover, it is a combustion reaction and all the combustion reactions are generally exothermic, i.e. $$\Delta {H^ \circ } = - ve$$
We know that,
$$\eqalign{ & \Delta {G^ \circ } = \Delta {H^ \circ } - T\Delta {S^ \circ } \cr & \Delta {G^ \circ } = - ve - T\left( { + ve} \right) \cr} $$
Thus, as the temperature increases, the value of $$\Delta {G^ \circ }$$ decreases.

Releted MCQ Question on
Physical Chemistry >> Chemical Thermodynamics

Releted Question 1

The difference between heats of reaction at constant pressure and constant volume for the reaction : $$2{C_6}{H_6}\left( l \right) + 15{O_{2\left( g \right)}} \to $$     $$12C{O_2}\left( g \right) + 6{H_2}O\left( l \right)$$     at $${25^ \circ }C$$  in $$kJ$$ is

A. $$-$$ 7.43
B. $$+$$ 3.72
C. $$-$$ 3.72
D. $$+$$ 7.43
Releted Question 2

For which change $$\Delta H \ne \Delta E\,:$$

A. $${H_{2\left( g \right)}} + {I_{2\left( g \right)}} \to 2HI\left( g \right)$$
B. $$HC{\text{l}} + NaOH \to NaC{\text{l}}$$
C. $${C_{\left( s \right)}} + {O_{{2_{\left( g \right)}}}} \to C{o_{{2_{\left( g \right)}}}}$$
D. $${N_2}\left( g \right) + 3{H_2}\left( g \right) \to 2N{H_3}\left( g \right)$$
Releted Question 3

$${\text{The}}\,\Delta H_f^0\,{\text{for}}\,C{O_2}\left( g \right),\,CO\left( g \right)\,$$     and $${H_2}O\left( g \right)$$   are $$-393.5,$$  $$-110.5$$  and $$ - 241.8\,kJ\,mo{l^{ - 1}}$$    respectively. The standard enthalpy change ( in $$kJ$$ ) for the reaction $$C{O_2}\left( g \right) + {H_2}\left( g \right) \to CO\left( g \right) + {H_2}O\left( g \right)\,{\text{is}}$$

A. 524.1
B. 41.2
C. -262.5
D. -41.2
Releted Question 4

In thermodynamics, a process is called reversible when

A. surroundings and system change into each other.
B. there is no boundary between system and surroundings.
C. the surroundings are always in equilibrium with the system.
D. the system changes into the surroundings spontaneously.

Practice More Releted MCQ Question on
Chemical Thermodynamics


Practice More MCQ Question on Chemistry Section