Question

In the sum of first $$n$$ terms of an A.P. is $$c{n^2}$$, then the sum of squares of these $$n$$ terms is

A. $$\frac{{n\left( {4{n^2} - 1} \right){c^2}}}{6}$$
B. $$\frac{{n\left( {4{n^2} + 1} \right){c^2}}}{3}$$
C. $$\frac{{n\left( {4{n^2} - 1} \right){c^2}}}{3}$$  
D. $$\frac{{n\left( {4{n^2} + 1} \right){c^2}}}{6}$$
Answer :   $$\frac{{n\left( {4{n^2} - 1} \right){c^2}}}{3}$$
Solution :
$$\eqalign{ & {\text{Given that for an A}}{\text{.P}}{\text{., }}{S_n} = c{n^2} \cr & {\text{Then }}\,{T_n} = {S_n} - {S_{n - 1}} = c{n^2} - c{\left( {n - 1} \right)^2} \cr & \,\,\,\,\,\, = \left( {2n - 1} \right)c \cr & \therefore \,\,{\text{Sum of squares of }}n{\text{ terms of this A}}{\text{.P}}{\text{.}} \cr & {\text{ = }}\sum {T_n^2 = \sum {{{\left( {2n - 1} \right)}^2}.{c^2}} } \cr & = \,\,{c^2}\left[ {4\sum {{n^2} - 4} \sum {n + n} } \right] \cr & = \,\,{c^2}\left[ {\frac{{4n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \frac{{4n\left( {n + 1} \right)}}{2} + n} \right] \cr & = \,\,{c^2}n\left[ {\frac{{2\left( {2{n^2} + 3n + 1} \right) - 6\left( {n + 1} \right) + 3}}{3}} \right] \cr & = \,\,{c^2}n\left[ {\frac{{4{n^2} - 1}}{3}} \right] = \frac{{n\left( {4{n^2} - 1} \right){c^2}}}{3} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section