Question

In the quadratic equation $$a{x^2} + bx + c = 0,\Delta = {b^2} - 4ac{\text{ and }}\alpha {\text{ + }}\beta {\text{,}}{\alpha ^2} + {\beta ^2},{\alpha ^3} + {\beta ^3},$$            are in G.P. where $$\alpha ,\beta $$  are the root of $$a{x^2} + bx + c = 0,$$    then

A. $$\Delta \ne 0$$
B. $$b\Delta = 0$$
C. $$c\Delta = 0$$  
D. $$\Delta = 0$$
Answer :   $$c\Delta = 0$$
Solution :
$$\eqalign{ & {\text{In the quadratic equation }}a{x^2} + bx + c = 0 \cr & \Delta = {b^2} - 4ac{\text{ and }}\alpha + \beta = - \frac{b}{a},\alpha \beta = \frac{c}{a} \cr & {\alpha ^2} + {\beta ^2} = {\left( {\alpha + \beta } \right)^2} - 2\alpha \beta \cr & = \frac{{{b^2}}}{{{a^2}}} - \frac{{2c}}{a} = \frac{{{b^2} - 2ac}}{{{a^2}}} \cr & {\text{and }}\,\,{\alpha ^3} + {\beta ^3} = - \frac{{{b^3}}}{{{a^3}}} - \frac{{3c}}{a}\left( { - \frac{b}{a}} \right) \cr & = - \left( {\frac{{{b^3} - 3abc}}{{{a^3}}}} \right) \cr & {\text{Given }}\alpha + \beta ,{\alpha ^2} + {\beta ^2},{\alpha ^3} + {\beta ^3}{\text{ are in G}}{\text{.P}}{\text{.}} \cr & \Rightarrow \,\, - \frac{b}{a}, - \frac{{{b^2} - 2ac}}{{{a^2}}}, - \frac{{\left( {{b^3} - 3\,abc} \right)}}{{{a^3}}}{\text{are in G}}{\text{.P}}{\text{.}} \cr & \Rightarrow {\left( {\frac{{{b^2} - 2\,ac}}{{{a^2}}}} \right)^2} = \frac{b}{a}\left( {\frac{{{b^3} - 3\,abc}}{{{a^3}}}} \right) \cr & \Rightarrow \,{b^4} + 4{a^2}{c^2} - 4a{b^2}c = {b^4} - 3\,a{b^2}c \cr & \Rightarrow \,4{a^2}{c^2} - a{b^2}c = 0 \cr & \Rightarrow \,ac\,\Delta = 0 \cr & \Rightarrow \,\,c\,\Delta = 0\,\,\left( {\because \,{\text{In quadractic }}a \ne 0} \right) \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section