Question

In the given figure, the equation of the larger circle is $${x^2} + {y^2} + 4y - 5 = 0$$     and the distance between centers is $$4.$$ Then the equation of smaller circle is
Circle mcq question image

A. $${\left( {x - \sqrt 7 } \right)^2} + {\left( {y - 1} \right)^2} = 1$$  
B. $${\left( {x + \sqrt 7 } \right)^2} + {\left( {y - 1} \right)^2} = 1$$
C. $${x^2} + {y^2} = 2\sqrt 7 x + 2y$$
D. None of these
Answer :   $${\left( {x - \sqrt 7 } \right)^2} + {\left( {y - 1} \right)^2} = 1$$
Solution :
We have $${x^2} + {y^2} + 4y - 5 = 0.$$
Its centre is $${C_1}\left( {0,\, - 2} \right),\,{r_1} = \sqrt {4 + 5} = 3$$
Let $${C_2}\left( {h,\,k} \right)$$  be the centre of the smaller circle and its radius $${r_2}.$$ Then, $${C_1}{C_2} = 4.$$
$$\eqalign{ & \Rightarrow \sqrt {{h^2} + {{\left( {k + 2} \right)}^2}} = 3 + {r_2} = 4......\left( 1 \right) \cr & \Rightarrow {r_2} = 1 \cr} $$
But $$k = {r_2} = 1$$   [it touches $$x$$-axis]
$$\therefore $$  From equation $$\left( 1 \right),$$ we get
$$\eqalign{ & 4 = \,\,\sqrt {{h^2} + {{\left( {1 + 2} \right)}^2}} \cr & \Rightarrow 16 = {h^2} + 9 \cr & \Rightarrow {h^2} = 7 \cr & \Rightarrow h = \pm \sqrt 7 \cr} $$
Since $$h > 0\,\,\,\,\,\therefore h = \sqrt 7 $$
Hence, required circle is $${\left( {x - \sqrt 7 } \right)^2} + {\left( {y - 1} \right)^2} = 1$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section