Solution :
There will be no current flowing in branch $$BE$$ in steady condition.
Let $$I$$ be the current flowing in the loop $$ABCDEFA.$$
Applying Kirchoff's law in the loop moving in anticlockwise direction starting from $$C.$$
$$\eqalign{
& + 2V - I\left( {2R} \right) - I\left( R \right) - V = 0 \cr
& \therefore V = 3IR \cr
& \Rightarrow I = \frac{V}{{3R}}\,\,......\left( 1 \right) \cr} $$
Applying Kirchoffs law in the circuit $$ABEFA$$ we get on moving in anticlockwise direction starting from $$B$$

$$\eqalign{
& + V + {V_{cap}} - IR - V = 0\left( {{\text{where}}\,{V_{cap}}\,{\text{is}}\,{\text{the}}\,p.d.\,{\text{across}}\,{\text{capacitor}}} \right) \cr
& \therefore {V_{cap}} = IR = \left( {\frac{V}{{3R}}} \right) \times R = \frac{V}{3} \cr} $$