Question

In the circuit shown here, the point $$'C'$$ is kept connected to point $$'A'$$ till the current flowing through the circuit becomes constant. Afterward, suddenly, point $$'C'$$ is disconnected from point $$'A'$$ and connected to point $$'B'$$ at time $$t = 0.$$  Ratio of the voltage across resistance and the inductor at $$t = \frac{L}{R}$$  will be equal to:
Electromagnetic Induction mcq question image

A. $$\frac{e}{{1 - e}}$$
B. 1
C. -1  
D. $$\frac{{1 - e}}{e}$$
Answer :   -1
Solution :
Applying Kirchhoff's law of voltage in closed loop
$$ - {V_R} - {V_C} = 0 \Rightarrow \frac{{{V_R}}}{{{V_C}}} = - 1$$
Electromagnetic Induction mcq solution image

Releted MCQ Question on
Electrostatics and Magnetism >> Electromagnetic Induction

Releted Question 1

A thin circular ring of area $$A$$ is held perpendicular to a uniform magnetic field of induction $$B.$$ $$A$$ small cut is made in the ring and a galvanometer is connected across the ends such that the total resistance of the circuit is $$R.$$ When the ring is suddenly squeezed to zero area, the charge flowing through the galvanometer is

A. $$\frac{{BR}}{A}$$
B. $$\frac{{AB}}{R}$$
C. $$ABR$$
D. $$\frac{{{B^2}A}}{{{R^2}}}$$
Releted Question 2

A thin semi-circular conducting ring of radius $$R$$ is falling with its plane vertical in horizontal magnetic induction $$\overrightarrow B .$$  At the position $$MNQ$$  the speed of the ring is $$v,$$ and the potential difference developed across the ring is
Electromagnetic Induction mcq question image

A. zero
B. $$\frac{{Bv\pi {R^2}}}{2}$$  and $$M$$ is at higher potential
C. $$\pi RBv$$  and $$Q$$ is at higher potential
D. $$2RBv$$  and $$Q$$ is at higher potential
Releted Question 3

Two identical circular loops of metal wire are lying on a table without touching each other. Loop-$$A$$ carries a current which increases with time. In response, the loop-$$B$$

A. remains stationary
B. is attracted by the loop-$$A$$
C. is repelled by the loop-$$A$$
D. rotates about its $$CM,$$  with $$CM$$  fixed
Releted Question 4

A coil of inductance $$8.4 mH$$  and resistance $$6\,\Omega $$  is connected to a $$12 V$$  battery. The current in the coil is $$1.0 A$$  at approximately the time

A. $$500 s$$
B. $$25 s$$
C. $$35 ms$$
D. $$1 ms$$

Practice More Releted MCQ Question on
Electromagnetic Induction


Practice More MCQ Question on Physics Section