Question

In the binomial expansion of $${\left( {a - b} \right)^n},n \geqslant 5,$$    the sum of the $${5^{th}}$$ and $${6^{th}}$$ terms is zero. Then $$\frac{a}{b}$$ equals

A. $$\frac{{\left( {n - 5} \right)}}{6}$$
B. $$\frac{{\left( {n - 4} \right)}}{5}$$  
C. $$\frac{5}{{\left( {n - 4} \right)}}$$
D. $$\frac{6}{{\left( {n - 5} \right)}}$$
Answer :   $$\frac{{\left( {n - 4} \right)}}{5}$$
Solution :
$${\left( {a - b} \right)^n},n \geqslant 5$$
In binomial expansion of above $${T_5} + {T_6} = 0$$
$$\eqalign{ & \Rightarrow \,{\,^n}{C_4}{a^{n - 4}}{b^4} + {\,^n}{C_5}{a^{n - 5}}{b^5} = 0 \cr & \Rightarrow \,\,\frac{{^n{C_4}}}{{^n{C_5}}}.\frac{a}{b} = 1 \cr & \Rightarrow \,\,\frac{{4 + 1}}{{n - 4}}.\frac{a}{b} = 1 \cr & \Rightarrow \,\,\frac{a}{b} = \frac{{n - 4}}{5} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section