Question

In the binomial expansion of $${\left( {a - b} \right)^n},n \geqslant 5,$$    the sum of $${5^{th}}$$ and $${6^{th}}$$ terms is zero, then $$\frac{a}{b}$$ equals

A. $$\frac{{n - 5}}{6}$$
B. $$\frac{{n - 4}}{5}$$  
C. $$\frac{5}{{n - 4}}$$
D. $$\frac{6}{{n - 5}}$$
Answer :   $$\frac{{n - 4}}{5}$$
Solution :
$${T_{r + 1}} = {\left( { - 1} \right)^r}.{\,^n}{C_r}{\left( a \right)^{n - r}}.{\left( b \right)^r}$$      is an expansion of $${\left( {a - b} \right)^n}$$
$$\eqalign{ & \therefore \,\,{5^{th}}\,{\text{term}}\,{\text{ = }}\,{t_5} = {t_{4 + 1}} \cr & = \,{\left( { - 1} \right)^4}{.^n}{C_4}{\left( a \right)^{n - 4}}.{\left( b \right)^4} = {\,^n}{C_4}.{a^{n - 4}}\,.\,{b^4} \cr & {6^{th}}{\text{ term }} = {t_6} = {t_{5 + 1}} \cr & = {\left( { - 1} \right)^5}.{\,^n}{C_5}{\left( a \right)^{n - 5}}{\left( b \right)^5} \cr & {\text{Given }}\,{t_5} + {t_6} = 0 \cr & \therefore \,{\,^n}{C_4}.{a^{n - 4}}.{b^4} + \left( { - {\,^n}{C_5}.{a^{n - 5}}.{b^5}} \right) = 0 \cr & \Rightarrow \,\,\frac{{n!}}{{4!\left( {n - 4} \right)!}}.\frac{{{a^n}}}{{{a^4}}}.{b^4} - \frac{{n!}}{{5!\left( {n - 5} \right)!}}.\frac{{{a^n}{b^5}}}{{{a^5}}} = 0 \cr & \Rightarrow \,\,\frac{{n!.{a^n}{b^4}}}{{4!\left( {n - 5} \right)!.{a^4}}}\left[ {\frac{1}{{\left( {n - 4} \right)}} - \frac{b}{{5.a}}} \right] = 0 \cr & {\text{or, }}\frac{1}{{n - 4}} - \frac{b}{{5a}} = 0 \cr & \Rightarrow \,\,\frac{a}{b} = \frac{{n - 4}}{5} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section