Question

In the binomial expansion $${\left( {a + bx} \right)^{ - 3}} = \frac{1}{8} + \frac{9}{8}x + .....,$$      then the value of $$a$$ and $$b$$ are :

A. $$a = 2 , b = 3$$
B. $$a = 2 , b = - 6$$  
C. $$a = 3 , b = 2$$
D. $$a = - 3 , b = 2$$
Answer :   $$a = 2 , b = - 6$$
Solution :
Given expansion is $${\left( {a + bx} \right)^{ - 3}}$$   which can be written as
$$\eqalign{ & {\left[ {a\left( {1 + \frac{b}{a}x} \right)} \right]^{ - 3}} = {a^{ - 3}}{\left( {1 + \frac{b}{a}x} \right)^{ - 3}} \cr & = {a^{ - 3}}\left( {1 - \frac{{3b}}{a}x + 6{{\left( {\frac{b}{a}x} \right)}^2} - .....} \right) \cr & \left( {{\text{By using}}{{\left( {1 + x} \right)}^{ - 3}} = 1 - 3x + 6{x^2} - .....} \right) \cr} $$
But given that : $${\left( {a + bx} \right)^{ - 3}} = \frac{1}{8} + \frac{9}{8}x + .....$$
$$\eqalign{ & \therefore {a^{ - 3}}\left[ {1 - \frac{{3b}}{a}x + 6\frac{{{b^2}}}{{{a^2}}} \cdot {x^2} - .....} \right] = \frac{1}{8} + \frac{9}{8}x + ..... \cr & \Rightarrow {a^{ - 3}} = \frac{1}{8} = {2^{ - 3}} \cr & \Rightarrow a = 2 \cr & {\text{and }} - 3b{a^{ - 4}} = 9 \cdot {2^{ - 3}} \cr & \Rightarrow b = - 6 \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section