Solution :
$$\eqalign{
& {\text{In }}\Delta \,OPM,\,\,OP = \frac{d}{{\cos \theta }} \cr
& {\text{In }}\Delta \,COP,\,OC = \frac{{d\cos 2\,\theta }}{{\cos \theta }} \cr} $$

Path difference between the two rays reaching $$P$$ is
$$\eqalign{
& = CO + OP + \frac{\lambda }{2} = \frac{{d\cos 2\,\theta }}{{\cos \theta }} + \frac{d}{{\cos \theta }} + \frac{\lambda }{2} \cr
& = \frac{d}{{\cos \theta }}\left( {\cos 2\,\theta + 1} \right) + \frac{\lambda }{2} = 2\,d\cos \theta + \frac{\lambda }{2} \cr} $$
For constructive interference, path difference should be $$n\lambda $$
$$\eqalign{
& \therefore \,\,2\,d\cos \theta + \frac{\lambda }{2} = n\lambda \cr
& \Rightarrow \,\,\cos \theta = \frac{{\left( {2\,n - 1} \right)}}{4}\frac{\lambda }{d} \cr
& {\text{For, }}n = 1,\cos \theta = \frac{\lambda }{{4\,d}} \cr} $$