Question

In order to measure physical quantities in the sub-atomic world, the quantum theory often employs energy $$\left[ E \right],$$  angular momentum $$\left[ J \right]$$ and velocity $$\left[ c \right]$$ as fundamental dimensions instead of the usual mass, length and time. Then, the dimension of pressure in this theory is

A. $$\frac{{{{\left[ E \right]}^4}}}{{{{\left[ J \right]}^3}{{\left[ c \right]}^3}}}$$  
B. $$\frac{{{{\left[ E \right]}^2}}}{{\left[ J \right]\left[ c \right]}}$$
C. $$\frac{{\left[ E \right]}}{{{{\left[ J \right]}^2}{{\left[ c \right]}^2}}}$$
D. $$\frac{{{{\left[ E \right]}^3}}}{{{{\left[ J \right]}^2}{{\left[ c \right]}^2}}}$$
Answer :   $$\frac{{{{\left[ E \right]}^4}}}{{{{\left[ J \right]}^3}{{\left[ c \right]}^3}}}$$
Solution :
$$\eqalign{ & \left[ E \right] = \left[ {M{L^2}{T^{ - 2}}} \right]\,......\left( {\text{i}} \right) \cr & \left[ J \right] = \left[ {M{L^2}{T^{ - 1}}} \right]\,......\left( {{\text{ii}}} \right) \cr & \left[ C \right] = \left[ {L{T^{ - 1}}} \right]\,......\left( {{\text{iii}}} \right) \cr} $$
Solving (i), (ii) and (iii) we get,
$$\left[ {\frac{E}{{{C^2}}}} \right] = \left[ M \right],\,\left[ {\frac{{JC}}{E}} \right] = \left[ L \right]\,\,{\text{and}}\,\,\left[ {\frac{J}{E}} \right] = \left[ T \right]$$
Now, $$\left[ {{\text{Pressure}}} \right] = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right]$$
$$ = \left[ {\frac{E}{{{C^2}}}} \right] \times \left[ {\frac{E}{{JC}}} \right] \times \left[ {\frac{{{E^2}}}{{{J^2}}}} \right] = \frac{{{{\left[ E \right]}^4}}}{{\left[ {{J^3}} \right]\left[ {{C^3}} \right]}}$$

Releted MCQ Question on
Basic Physics >> Unit and Measurement

Releted Question 1

The dimension of $$\left( {\frac{1}{2}} \right){\varepsilon _0}{E^2}$$  ($${\varepsilon _0}$$ : permittivity of free space, $$E$$ electric field)

A. $$ML{T^{ - 1}}$$
B. $$M{L^2}{T^{ - 2}}$$
C. $$M{L^{ - 1}}{T^{ - 2}}$$
D. $$M{L^2}{T^{ - 1}}$$
Releted Question 2

A quantity $$X$$ is given by $${\varepsilon _0}L\frac{{\Delta V}}{{\Delta t}}$$   where $${ \in _0}$$ is the permittivity of the free space, $$L$$ is a length, $$\Delta V$$ is a potential difference and $$\Delta t$$ is a time interval. The dimensional formula for $$X$$ is the same as that of-

A. resistance
B. charge
C. voltage
D. current
Releted Question 3

A cube has a side of length $$1.2 \times {10^{ - 2}}m$$  . Calculate its volume.

A. $$1.7 \times {10^{ - 6}}{m^3}$$
B. $$1.73 \times {10^{ - 6}}{m^3}$$
C. $$1.70 \times {10^{ - 6}}{m^3}$$
D. $$1.732 \times {10^{ - 6}}{m^3}$$
Releted Question 4

Pressure depends on distance as, $$P = \frac{\alpha }{\beta }exp\left( { - \frac{{\alpha z}}{{k\theta }}} \right),$$     where $$\alpha ,$$ $$\beta $$ are constants, $$z$$ is distance, $$k$$ is Boltzman’s constant and $$\theta $$ is temperature. The dimension of $$\beta $$ are-

A. $${M^0}{L^0}{T^0}$$
B. $${M^{ - 1}}{L^{ - 1}}{T^{ - 1}}$$
C. $${M^0}{L^2}{T^0}$$
D. $${M^{ - 1}}{L^1}{T^2}$$

Practice More Releted MCQ Question on
Unit and Measurement


Practice More MCQ Question on Physics Section