Question

In $$\Delta ABC$$   the mid-point of the sides $$AB,\,BC$$   and $$CA$$  are respectively $$\left( {l,\,0,\,0} \right),\,\left( {0,\,m,\,0} \right)$$     and $$\left( {0,\,0,\,n} \right).$$
Then, $$\frac{{A{B^2} + B{C^2} + C{A^2}}}{{{l^2} + {m^2} + {n^2}}}$$     is equal to :

A. 2
B. 4
C. 8  
D. 16
Answer :   8
Solution :
$${\text{From the figure}}$$
Three Dimensional Geometry mcq solution image
$$\eqalign{ & {x_1} + {x_2} = 2l,\,{y_1} + {y_2} = 0,\,{z_1} + {z_2} = 0 \cr & {x_2} + {x_3} = 0,\,{y_2} + {y_3} = 2m,\,{z_1} + {z_3} = 0 \cr & {\text{and }}{x_1} + {x_3} = 0,\,{y_1} + {y_3} = 0,\,{z_1} + {z_3} = 2n \cr & {\text{On solving, we get}} \cr & {x_1} = l,\,{x_2} = l,\,{x_3} = - l \cr & {y_1} = - m,\,{y_2} = m,\,{y_3} = m \cr & {\text{and }}{z_1} = n,\,{z_2} = - n,\,{z_3} = n \cr & \therefore \,{\text{Coordinates are}}\,: \cr & A\left( {l,\, - m,\,n} \right),\,B\left( {l,\,m,\, - n} \right){\text{and }}C\left( { - l,\,m,\,n} \right) \cr & \therefore \,\frac{{A{B^2} + B{C^2} + C{A^2}}}{{{l^2} + {m^2} + {n^2}}} \cr & = \frac{{\left( {4{m^2} + 4{n^2}} \right) + \left( {4{l^2} + 4{n^2}} \right) + \left( {4{l^2} + 4{m^2}} \right)}}{{{l^2} + {m^2} + {n^2}}} \cr & = 8 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section