Question

In an experiment, electrons are made to pass through a narrow slit of width $$‘d’$$ comparable to their de Broglie wavelength. They are detected on a screen at a distance $$‘D’$$ from the slit (see figure).
Wave Optics mcq question image
Which of the following graphs can be expected to represent the number of electrons $$‘N'$$ detected as a function of the detector position $$‘y’$$ ($$y = 0$$  corresponds to the middle of the slit)

A. Wave Optics mcq option image
B. Wave Optics mcq option image
C. Wave Optics mcq option image
D. Wave Optics mcq option image  
Answer :   Wave Optics mcq option image
Solution :
The electron beam will be diffracted and the maxima is obtained at $$y = 0.$$  Also the distance between the first minima on both side will be greater than $$d.$$

Releted MCQ Question on
Optics and Wave >> Wave Optics

Releted Question 1

In Young’s double-slit experiment, the separation between the slits is halved and the distance between the slits and the screen is doubled. The fringe width is

A. unchanged.
B. halved
C. doubled
D. quadrupled
Releted Question 2

Two coherent monochromatic light beams of intensities $$I$$ and $$4\,I$$  are superposed. The maximum and minimum possible intensities in the resulting beam are

A. $$5\,I$$  and $$I$$
B. $$5\,I$$  and $$3\,I$$
C. $$9\,I$$  and $$I$$
D. $$9\,I$$  and $$3\,I$$
Releted Question 3

A beam of light of wave length $$600\,nm$$  from a distance source falls on a single slit $$1mm$$  wide and a resulting diffraction pattern is observed on a screen $$2\,m$$  away. The distance between the first dark fringes on either side of central bright fringe is

A. $$1.2\,cm$$
B. $$1.2\,mm$$
C. $$2.4\,cm$$
D. $$2.4\,mm$$
Releted Question 4

Consider Fraunh offer diffraction pattern obtained with a single slit illuminated at normal incidence. At the angular position of the first diffraction minimum the phase difference (in radians) between the wavelets from the opposite edges of the slit is

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$2\,\pi $$
D. $$\pi $$

Practice More Releted MCQ Question on
Wave Optics


Practice More MCQ Question on Physics Section