Solution :
The situation is as shown in the figure. For circle with centre $${C_2},BP$$ and $$BP'$$ are two tangents from $$B$$ to circle, therefore $$B{C_2}$$ must be the $$\angle$$ bisector of $$\angle B.$$ But $$\angle B = 60°$$ $$\left( {\because \,\,\Delta ABC\,\,{\text{is an equilateral}}\,\,\Delta } \right)$$

$$\eqalign{
& \therefore \,\,\angle {C_2}BP = {30^ \circ } \cr
& \therefore \,\,\tan {30^ \circ } = \frac{1}{x} \cr
& \Rightarrow \,\,x = \sqrt 3 \cr
& \therefore \,\,BC = BP + PQ + QC \cr
& = x + 2 + x = 2 + 2\sqrt 3 \cr
& \therefore \,\,{\text{Area of }}\Delta ABC = \frac{{\sqrt 3 }}{4} \times {\left( {2 + 2\sqrt 3 } \right)^2} \cr
& = 4\sqrt 3 + 6\,\,{\text{sq}}{\text{. units}}{\text{.}} \cr} $$