Solution :

when $$L$$ is removed from the circuit

$$\eqalign{
& \frac{{{X_C}}}{R} = \tan \frac{\pi }{3} \cr
& {X_C} = R\tan \frac{\pi }{3}\,......\left( {\text{i}} \right) \cr} $$
when $$C$$ is remove from the circuit

$$\eqalign{
& \frac{{{X_L}}}{R} = \tan \frac{\pi }{3} \cr
& {X_C} = R\tan \frac{\pi }{3}\,......\left( {{\text{ii}}} \right) \cr} $$
net impedence $$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} = R$$
power factor $$\cos \phi = \frac{R}{Z} = 1$$