Question

In a triangle $$PQR,$$  $$\angle R = \frac{\pi }{2}.$$  If $$\tan \left( {\frac{P}{2}} \right)$$  and $$\tan \left( {\frac{Q}{2}} \right)$$  are the roots of the equation $$a{x^2} + bx + c = 0\left( {a \ne 0} \right)$$     then.

A. $$a + b = c$$  
B. $$b + c = a$$
C. $$a + c = b$$
D. $$b = c$$
Answer :   $$a + b = c$$
Solution :
Given that in $$\Delta PQR,\angle R = \frac{\pi }{2}$$
$$\eqalign{ & \Rightarrow \,\,\angle P + \angle Q = \frac{\pi }{2} \cr & \Rightarrow \,\,\frac{{\angle P}}{2} + \frac{{\angle Q}}{2} = \frac{\pi }{4} \cr} $$
Also $$\tan \frac{P}{2}{\text{ and tan}}\frac{Q}{2}$$   are roots of the equation
$$\eqalign{ & a{x^2} + bx + c = 0\left( {a \ne 0} \right) \cr & \therefore \,\,\tan \frac{P}{2} + \tan \frac{Q}{2} = - \frac{b}{a};\tan \frac{P}{2}\tan \frac{Q}{2} = \frac{c}{a} \cr} $$
Now consider, $$\tan \left( {\frac{{P + Q}}{2}} \right) = \frac{{\tan \frac{P}{2} + \tan \frac{Q}{2}}}{{1 - \tan \frac{P}{2}\tan \frac{Q}{2}}}$$
$$\eqalign{ & \Rightarrow \,\,\tan \frac{\pi }{4} = \frac{{ - \frac{b}{a}}}{{1 - \frac{c}{a}}} \cr & \Rightarrow \,\,1 - \frac{c}{a} = - \frac{b}{a} \cr & \Rightarrow \,\,a - c = - b \cr & \Rightarrow \,\,a + b = c \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section