Question

In a triangle $$PQR,$$   $$\angle \,R = \frac{\pi }{2}.\,{\text{If tan}}\left( {\frac{P}{2}} \right){\text{and }} - \tan \left( {\frac{Q}{2}} \right)$$        are the roots of $$a{x^2} + bx + c = 0,\,a \ne 0\,\,{\text{then}}$$

A. $$a = b + c$$
B. $$c = a + b$$  
C. $$b = c$$
D. $$b = a + c$$
Answer :   $$c = a + b$$
Solution :
$$\tan \left( {\frac{P}{2}} \right),\tan \left( {\frac{Q}{2}} \right)$$    are the roots of $$a{x^2} + bx + c = 0$$
$$\eqalign{ & \tan \left( {\frac{P}{2}} \right) + \tan \left( {\frac{Q}{2}} \right) = - \frac{b}{a},\tan \left( {\frac{P}{2}} \right) \cdot \tan \left( {\frac{Q}{2}} \right) = \frac{c}{a} \cr & \frac{{\tan \left( {\frac{P}{2}} \right) + \tan \left( {\frac{Q}{2}} \right)}}{{1 - \tan \left( {\frac{P}{2}} \right)\tan \left( {\frac{Q}{2}} \right)}} = \tan \left( {\frac{P}{2} + \frac{Q}{2}} \right) = 1 \cr & \Rightarrow \,\,\frac{{ - \frac{b}{a}}}{{1 - \frac{c}{a}}} = 1 \cr & \Rightarrow \,\, - \frac{b}{a} = \frac{a}{a} - \frac{c}{a} \cr & \Rightarrow \,\, - b = a - c\,\,\,{\text{or }}c = a + b. \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section