Question
In a set of the given reactions, acetic acid yielded a product $$C.$$
$$C{H_3}COOH + PC{l_5} \to $$ \[A\xrightarrow[\text{ Anhy}.\,AlC{{l}_{3}}]{{{C}_{6}}{{H}_{6}}}B\xrightarrow[\text{ether}]{{{C}_{2}}{{H}_{5}}MgBr}C\]
Product $$C$$ would be
A.
$$C{H_3}CH\left( {OH} \right){C_2}{H_5}$$
B.
$$C{H_3}CO{C_6}{H_5}$$
C.
$$C{H_3}CH\left( {OH} \right){C_6}{H_5}$$
D.
\[\overset{\begin{smallmatrix}
{{C}_{2}}{{H}_{5}}\, \\
|\,\,\,\,\,\,\,\,\,
\end{smallmatrix}}{\mathop{C{{H}_{3}}-C\left( OH \right){{C}_{6}}{{H}_{5}}}}\,\]
Answer :
\[\overset{\begin{smallmatrix}
{{C}_{2}}{{H}_{5}}\, \\
|\,\,\,\,\,\,\,\,\,
\end{smallmatrix}}{\mathop{C{{H}_{3}}-C\left( OH \right){{C}_{6}}{{H}_{5}}}}\,\]
Solution :
\[C{{H}_{3}}COOH+PC{{l}_{5}}\to \underset{\left( A \right)}{\mathop{C{{H}_{3}}COCl}}\,\] \[\xrightarrow[\text{anhy}\text{.}\,AlC{{l}_{3}}]{{{C}_{6}}{{H}_{6}}}\]
\[\underset{\left( B \right)}{\mathop{{{C}_{6}}{{H}_{5}}COC{{H}_{3}}}}\,\xrightarrow[\text{ether}]{{{C}_{2}}{{H}_{5}}MgBr}\] \[\underset{\left( C \right)}{\mathop{\underset{\begin{smallmatrix}
|\,\,\,\,\,\,\, \\
OH\,\,\,\,
\end{smallmatrix}}{\overset{\begin{smallmatrix}
\,\,{{C}_{2}}{{H}_{5}} \\
|\,\,\,\,\,
\end{smallmatrix}}{\mathop{{{C}_{6}}{{H}_{5}}C-C{{H}_{3}}}}}\,}}\,\]