Question

In a right angle $$\Delta ABC,\,\angle A = {90^ \circ }$$    and sides $$a,\,b,\,c$$ are respectively, $$5\,cm,$$  $$4\,cm$$  and $$3\,cm.$$  If a force $$\overrightarrow F $$ has moments $$0,\,9$$  and $$16$$  in $$N\,cm$$   units respectively about vertices $$A,\,B$$  and $$C,$$ then magnitude of $$\overrightarrow F $$ is :

A. $$9$$
B. $$4$$
C. $$5$$  
D. $$3$$
Answer :   $$5$$
Solution :
3D Geometry and Vectors mcq solution image
Since, the moment about $$A$$ is zero, hence $$\overrightarrow F $$ passes through $$A.$$ Taking $$A$$ as origin.
Let the line of action of force $$\overrightarrow F $$ be $$y = mx.$$   (see figure)
Moment about $$B = \frac{{3m}}{{\sqrt {1 + {m^2}} }}\left| {\overrightarrow F } \right| = 9......\left( 1 \right)$$
Moment about $$C = \frac{4}{{\sqrt {1 + {m^2}} }}\left| {\overrightarrow F } \right| = 16......\left( 2 \right)$$
Dividing $$\left( 1 \right)$$ by $$\left( 2 \right),$$ we get :
$$m = \frac{3}{4} \Rightarrow \left| {\overrightarrow F } \right| = 5N.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section