Solution :
For first resonance
$${\ell _1} + e = \frac{\lambda }{4}$$
For second resonance
$${\ell _2} + e = \frac{{3\,\lambda }}{4}$$
$$\eqalign{
& {\text{But, }}\nu = \nu \lambda \cr
& \therefore \,\,\nu = \nu \frac{4}{3}\left( {{\ell _2} + e} \right) \cr
& \Rightarrow \,\,{\ell _2} + e = \frac{{3\nu }}{{4\nu }}\,\,\,.....\left( {\text{i}} \right) \cr
& \therefore \,\,\nu = \nu 4\left( {{\ell _1} + e} \right) \cr
& \Rightarrow \,\,{\ell _1} + e = \frac{\nu }{{4\nu }}\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
Subtracting (i) and (ii),
$$\eqalign{
& \nu = 2\nu \left( {{\ell _2} - {\ell _1}} \right) \cr
& \therefore \,\,\Delta \nu = 2\nu \left( {\Delta {\ell _2} + \Delta {\ell _1}} \right) \cr
& = 2 \times 512 \times \left( {0.1 + 0.1} \right)\,cm/s \cr
& = 204.8\,cm/s \cr} $$