Question

In a $$\Delta PQR,$$  If $$3\sin P + 4\cos Q = 6$$     and $$4\sin Q + 3\cos P = 1$$     then the angle $$R$$ is equal to:

A. $$\frac{{5\pi }}{6}$$
B. $$\frac{{\pi }}{6}$$  
C. $$\frac{{\pi }}{4}$$
D. $$\frac{{3\pi }}{4}$$
Answer :   $$\frac{{\pi }}{6}$$
Solution :
Given $$3\sin P + 4\cos Q = 6\,\,\,\,.....\left( {\text{i}} \right)$$
$$4\sin Q + 3\cos P = 1\,\,\,\,.....\left( {{\text{ii}}} \right)$$
Squaring and adding (i) & (ii) we get
$$\eqalign{ & 9{\sin ^2}P + 16{\cos ^2}Q + 24\sin P\cos Q + 16{\sin ^2}Q + 9{\cos ^2}P + 24\sin Q\cos P = 36 + 1 = 37 \cr & \Rightarrow \,\,9\left( {{{\sin }^2}P + {{\cos }^2}P} \right) + 16\left( {{{\sin }^2}Q + {{\cos }^2}Q} \right) + 24\left( {\sin P\cos Q + \cos P\sin Q} \right) = 37 \cr & \Rightarrow \,\,9 + 16 + 24\sin \left( {P + Q} \right) = 37 \cr & \left[ {\because \,\,{{\sin }^2}\theta + {{\cos }^2}\theta = 1\,\,{\text{and }}\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)} \right] \cr & \Rightarrow \,\,\sin \left( {P + Q} \right) = \frac{1}{2} \cr & \Rightarrow \,\,P + Q = \frac{\pi }{6}\,\,{\text{or }}\frac{{5\pi }}{6} \cr & \Rightarrow \,\,R = \frac{{5\pi }}{6}\,\,{\text{or }}\frac{\pi }{6}\,\,\left( {\because \,\,P + Q + R = \pi } \right) \cr & {\text{If }}R = \frac{{5\pi }}{6}\,\,{\text{then 0}} < P,Q < \frac{\pi }{6} \cr & \Rightarrow \,\,\cos Q < 1\,\,{\text{and }}\sin P < \frac{1}{2} \cr} $$
$$ \Rightarrow \,\,3\sin P + 4\cos Q < \frac{{11}}{2}$$       which is not true.
$${\text{So, }}R = \frac{\pi }{6}$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section