Question

In a $$\Delta ABC,\,\angle B = {90^ \circ }$$    and $$b+a=4.$$   The area of the triangle is the maximum when $$\angle C$$  is :

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{6}$$
C. $$\frac{\pi }{3}$$  
D. none of these
Answer :   $$\frac{\pi }{3}$$
Solution :
Application of Derivatives mcq solution image
$$\eqalign{ & b\cos \,\theta = a \cr & \therefore \,b\cos \,\theta + b = 4 \cr & {\text{or, }}b = \frac{4}{{1 + \cos \,\theta }} \cr & \therefore \,a = \frac{{4\cos \,\theta }}{{1 + \cos \,\theta }} \cr & \therefore {\text{ area}} = \Delta = \frac{1}{2}\,ba\sin \,\theta = \frac{1}{2}.\frac{4}{{1 + \cos \,\theta }}.\frac{{4\cos \,\theta }}{{1 + \cos \,\theta }}.\sin \,\theta = \frac{{4\sin \,2\theta }}{{{{\left( {1 + \cos \,\theta } \right)}^2}}} \cr & \therefore \,\frac{{d\Delta }}{{d\theta }} = 4.\frac{{2\cos \,2\theta {{\left( {1 + \cos \,\theta } \right)}^2} + \sin \,2\theta .2\left( {1 + \cos \,\theta } \right)\sin \,\theta }}{{{{\left( {1 + \cos \,\theta } \right)}^4}}} \cr & \therefore \,\frac{{d\Delta }}{{d\theta }} = 0\,\,\, \Rightarrow \cos \,2\theta .\left( {1 + \cos \,\theta } \right) + \sin \,2\theta .\sin \,\theta = 0 \cr & {\text{or, }}\cos \,2\theta + \cos \,\theta = 0 \cr & \therefore \,\cos \,2\theta = - \cos \,\theta = \cos \,\left( {\pi - \theta } \right){\text{ or }}\theta = \frac{\pi }{3} \cr} $$
$$\therefore \,\Delta $$  is maximum when $$\theta = \frac{\pi }{3}.$$   (It cannot be minimum, since in the given situation minimum is 0.)

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section