Question

In [0,1] Lagranges Mean Value theorem is NOT applicable to

A. \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{1}{2} - x}&{x < \frac{1}{2}} \\ {{{\left( {\frac{1}{2} - x} \right)}^2}}&{x \geqslant \frac{1}{2}} \end{array}} \right.\]  
B. \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{\sin x}}{x},} \\ {1,} \end{array}} \right.\begin{array}{*{20}{c}} {x \ne 0} \\ {x = 0} \end{array}\]
C. $$f\left( x \right) = x\left| x \right|$$
D. $$f\left( x \right) = \left| x \right|$$
Answer :   \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{1}{2} - x}&{x < \frac{1}{2}} \\ {{{\left( {\frac{1}{2} - x} \right)}^2}}&{x \geqslant \frac{1}{2}} \end{array}} \right.\]
Solution :
There is only one function in option (A) whose critical point $$\frac{1}{2} \in \left( {0,1} \right)$$   for the rest of the parts critical point $$0 \notin \left( {0,1} \right).$$   It can be easily seen that functions in options (B), (C) and (D) are continuous on [0, 1] and differentiable in (0, 1).
\[{\text{Now}}\,{\text{for}}\,f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\left( {\frac{1}{2} - x} \right),}&{x < \frac{1}{2}} \\ {{{\left( {\frac{1}{2} - x} \right)}^2},}&{x \geqslant \frac{1}{2}} \end{array}} \right.\]
$$\eqalign{ & {\text{Here}}\,f'\left( {\frac{{{1^ - }}}{2}} \right) = - 1\,{\text{and}}\,f'\left( {\frac{{{1^ + }}}{2}} \right) = - 2\left( {\frac{1}{2} - \frac{1}{2}} \right) = 0 \cr & \therefore f'\left( {\frac{{{1^ - }}}{2}} \right) \ne f'\left( {\frac{{{1^ + }}}{2}} \right) \cr & \therefore f\,{\text{is not differentiable at }}\frac{1}{2} \in \left( {0,1} \right) \cr & \therefore LMV{\text{ is not applicable for this function in}}\,\left[ {0,1} \right] \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section