Question

Imagine a new planet having the same density as that of earth but it is $$3$$ times bigger than the earth in size. If the acceleration due to gravity on the surface of earth is $$g$$ and that on the surface of the new planet is $$g',$$  then

A. $$g' = \frac{g}{9}$$
B. $$g' = 27\,g$$
C. $$g' = 9\,g$$
D. $$g' = 3\,g$$  
Answer :   $$g' = 3\,g$$
Solution :
We know that
$$\eqalign{ & g = \frac{{GM}}{{{R^2}}} = \frac{{G\left( {\frac{4}{3}\pi {R^3}} \right)\rho }}{{{R^2}}} = \frac{4}{3}\pi GR\rho \cr & \frac{{g'}}{g} = \frac{{R'}}{R} = \frac{{3R}}{R} = 3 \cr & \therefore g' = 3\;g \cr} $$

Releted MCQ Question on
Basic Physics >> Gravitation

Releted Question 1

If the radius of the earth were to shrink by one percent, its mass remaining the same, the acceleration due to gravity on the earth’s surface would-

A. Decrease
B. Remain unchanged
C. Increase
D. Be zero
Releted Question 2

If $$g$$ is the acceleration due to gravity on the earth’s surface, the gain in the potential energy of an object of mass $$m$$ raised from the surface of the earth to a height equal to the radius $$R$$ of the earth, is-

A. $$\frac{1}{2}\,mgR$$
B. $$2\,mgR$$
C. $$mgR$$
D. $$\frac{1}{4}mgR$$
Releted Question 3

If the distance between the earth and the sun were half its present value, the number of days in a year would have been-

A. $$64.5$$
B. $$129$$
C. $$182.5$$
D. $$730$$
Releted Question 4

A geo-stationary satellite orbits around the earth in a circular orbit of radius $$36,000 \,km.$$   Then, the time period of a spy satellite orbiting a few hundred km above the earth's surface $$\left( {{R_{earth}} = 6400\,km} \right)$$    will approximately be-

A. $$\frac{1}{2}\,hr$$
B. $$1 \,hr$$
C. $$2 \,hr$$
D. $$4 \,hr$$

Practice More Releted MCQ Question on
Gravitation


Practice More MCQ Question on Physics Section