Question

If $$z = x + iy,{z^{\frac{1}{3}}} = a - ib,$$     then $$\frac{x}{a} - \frac{y}{b} = k\left( {{a^2} - {b^2}} \right)$$    where $$k$$ is equal to

A. 1
B. 2
C. 3
D. 4  
Answer :   4
Solution :
$$\eqalign{ & {z^{\frac{1}{3}}} = a - ib \cr & \Rightarrow z = {\left( {a - ib} \right)^3} \cr & \therefore x + iy = {a^3} + i{b^3} - 3i{a^2}b - 3a{b^2}. \cr & {\text{Then, }}x = {a^3} - 3a{b^2} \cr & \Rightarrow \frac{x}{a} = {a^2} - 3{b^2} \cr & y = {b^3} - 3{a^2}b \cr & \Rightarrow \frac{y}{b} = {b^2} - 3{a^2} \cr & {\text{So, }}\frac{x}{a} - \frac{y}{b} = 4\left( {{a^2} - {b^2}} \right) \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section