Question

If $$\left| z \right| = \max \left\{ {\left| {z - 1} \right|,\left| {z + 1} \right|} \right\}$$     then

A. $$\left| {z + \bar z} \right| = \frac{1}{2}$$
B. $$z + \bar z = 1$$
C. $$\left| {z + \bar z} \right| = 1$$
D. None of these  
Answer :   None of these
Solution :
$$\eqalign{ & {\text{If}}\,\,\left| {z - 1} \right| > \left| {z + 1} \right|,{\text{then}}\,{\text{max}}\,\left\{ {\left| {z - 1} \right|,\left| {z + 1} \right|} \right\} = \left| {z - 1} \right| \cr & \Rightarrow \,{\text{If}}\,\,{\left| z \right|^2} + 1 - z - \bar z > {\left| z \right|^2} + 1 + z + \bar z\,\,{\text{then}}\,\,\left| z \right| = \left| {z - 1} \right| \cr & \Rightarrow \,{\text{If}}\,\,z + \bar z\,{\text{ < }}\,{\text{0}}\,\,{\text{then}}\,\,{\left| z \right|^2} = {\left| z \right|^2} + 1 - z - \bar z \cr & \Rightarrow \,{\text{If}}\,\,z + \bar z\,{\text{ < }}\,{\text{0}}\,\,{\text{then}}\,\,z + \bar z = 1, \cr} $$
which is not possible.
$$\eqalign{ & {\text{Again,}}\,\,{\text{If}}\,\,\left| {z + 1} \right| > \left| {z - 1} \right|\,\,{\text{then}}\,\,{\text{max}}\,\left\{ {\left| {z - 1} \right|,\left| {z + 1} \right|} \right\} = \left| {z + 1} \right| \cr & \Rightarrow \,{\text{If}}\,{\left| z \right|^2} + 1 + z + \bar z > {\left| z \right|^2} + 1 - z - \bar z\,\,{\text{then}}\,\,\left| z \right| = \left| {z + 1} \right| \cr & \Rightarrow \,{\text{If}}\,\,z + \bar z > 0\,\,{\text{then}}\,\,{\left| z \right|^2} = {\left| z \right|^2} + 1 + z + \bar z \cr & \Rightarrow \,{\text{If}}\,\,z + \bar z > 0\,\,{\text{then}}\,\,z + \bar z = - 1\,\,{\text{Not}}\,{\text{possible}}\,{\text{again}}. \cr} $$
Therefore the given result cannot hold.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section