Question

If $$z$$ is a complex number such that $$\left| z \right| \geqslant 2,$$  then the minimum value of $$\left| {z + \frac{1}{2}} \right|:$$

A. is strictly greater than $$\frac{5}{2}$$
B. is strictly greater than $$\frac{3}{2}$$ but less than $$\frac{5}{2}$$  
C. is equal to $$\frac{5}{2}$$
D. lie in the interval $$(1, 2)$$
Answer :   is strictly greater than $$\frac{3}{2}$$ but less than $$\frac{5}{2}$$
Solution :
We know minimum value of $$\left| {{Z_1} + {Z_2}} \right|{\text{ is }}\left| {\left| {{Z_1}} \right| - \left| {{Z_2}} \right|} \right|$$
Thus minimum value of $$\left| {Z + \frac{1}{2}} \right|{\text{ is }}\left| {\left| Z \right| - \frac{1}{2}} \right| \leqslant \left| {Z + \frac{1}{2}} \right| \leqslant \left| Z \right| + \frac{1}{2}$$
$$\eqalign{ & {\text{Since, }}\left| Z \right| \geqslant 2{\text{ therefore 2}} - \frac{1}{2} < \left| {Z + \frac{1}{2}} \right| < 2 + \frac{1}{2} \cr & \Rightarrow \,\,\frac{3}{2} < \left| {Z + \frac{1}{2}} \right| < \frac{5}{2} \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section