Question

If $$z$$ in any complex number satisfying $$\left| {z - 1} \right| = 1,$$   then which of the following is correct ?

A. $$arg\left( {z - 1} \right) = 2\arg z$$  
B. $$2arg\left( z \right) = \frac{2}{3}\arg \left( {{z^2} - z} \right)$$
C. $$arg\left( {z - 1} \right) = \arg \left( {z + 1} \right)$$
D. $$\arg z = 2\arg \left( {z + 1} \right)$$
Answer :   $$arg\left( {z - 1} \right) = 2\arg z$$
Solution :
$$\eqalign{ & {\text{Since}}\,\left| {z - 1} \right| = 1 \cr & \therefore \,z - 1 = {e^{i\theta }},\,{\text{where}}\,\,\,\,\arg \left| {z - 1} \right| = \theta \cr & \therefore \,z = 1 + \cos \,\theta + i\,\sin \,\theta \cr & = \,2\cos \frac{\theta }{2}\left[ {\cos \frac{\theta }{2} + i\,\sin \,\frac{\theta }{2}} \right] \cr & = \,2\cos \frac{\theta }{2}.{e^{\frac{{i\theta }}{2}}} = 2{\cos ^2}\frac{\theta }{2} + 2i\,\sin \frac{\theta }{2}\cos \frac{\theta }{2} \cr} $$
Thus, $$arg\left( {z - 1} \right) = 2\arg z.$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section