Question

If $$\left| {z - 4} \right| < \left| {z - 2} \right|,$$    its solution is given by

A. Re$$(z)$$ > 0
B. Re$$(z)$$ < 0
C. Re$$(z)$$ > 3  
D. Re$$(z)$$ > 2
Answer :   Re$$(z)$$ > 3
Solution :
$$\eqalign{ & {\text{Given}}\,\left| {z - 4} \right| < \left| {z - 2} \right|{\text{Let}}\,z = x + iy \cr & \Rightarrow \,\,\left| {\left( {x - 4} \right) + iy)} \right| < \left| {\left( {x - 2} \right) + iy} \right| \cr & \Rightarrow \,\,{\left( {x - 4} \right)^2} + {y^2} < {\left( {x - 2} \right)^2} + {y^2} \cr & \Rightarrow \,\,{x^2} - 8x + 16 < {x^2} - 4x + 4 \cr & \Rightarrow \,\,12 < 4x \cr & \Rightarrow \,\,x > 3 \cr} $$
$$ \Rightarrow \,\,\operatorname{Re} \left( z \right) > 3$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section