Question

If $$z^2 + z +1 = 0,$$    where $$z$$ is complex number, then the value of $${\left( {z + \frac{1}{z}} \right)^2} + {\left( {{z^2} + \frac{1}{{{z^2}}}} \right)^2} + {\left( {{z^3} + \frac{1}{{{z^3}}}} \right)^2} + ..... + {\left( {{z^6} + \frac{1}{{{z^6}}}} \right)^2}\,{\text{is}}$$

A. 18
B. 54
C. 6
D. 12  
Answer :   12
Solution :
$$\eqalign{ & {z^2} + z + 1 = 0 \cr & \Rightarrow z = \omega \,\,{\text{or }}{\omega ^2} \cr & {\text{So, }}z + \frac{1}{z} = \omega + {\omega ^2} = - 1 \cr & {z^2} + \frac{1}{{{z^2}}} = {\omega ^2} + \omega = - 1, \cr & {z^3} + \frac{1}{{{z^3}}} = {\omega ^3} + {\omega ^3} = 2 \cr & {z^4} + \frac{1}{{{z^4}}} = - 1,{z^5} + \frac{1}{{{z^5}}} = - 1{\text{ and }}{z^6} + \frac{1}{{{z^6}}} = 2 \cr} $$
∴ The given sum $$ = 1 + 1 + 4 +1 +1 + 4 = 12$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section