Question

If $$z{\left( {2 - i2\sqrt 3 } \right)^2} = i{\left( {\sqrt 3 + i} \right)^4}$$     then amplitude of $$z$$ is

A. $$\frac{{5\pi }}{6}$$
B. $$ - \frac{{\pi }}{6}$$  
C. $$\frac{{\pi }}{6}$$
D. $$\frac{{7\pi }}{6}$$
Answer :   $$ - \frac{{\pi }}{6}$$
Solution :
$$\eqalign{ & z = \frac{{i{{\left( {\sqrt 3 + i} \right)}^4}}}{{4{{\left( {1 - \sqrt 3 i} \right)}^2}}} = \frac{i}{4} \cdot \frac{{{{\left( {2 + 2\sqrt {3}i } \right)}^2}}}{{ - 2 - 2\sqrt {3}i }} = \frac{{i\left( { - 2 + 2\sqrt {3}i } \right)}}{{2\left( { - 1 - \sqrt {3}i } \right)}} = \frac{{\sqrt 3 + i}}{{1 + \sqrt {3}i }} \cr & z = \frac{{\left( {\sqrt 3 + i} \right)\left( {1 - \sqrt {3}i } \right)}}{{1 + 3}} = \frac{{2\sqrt 3 - 2i}}{4} = \frac{{\sqrt 3 }}{2} - \frac{i}{2} \cr & \therefore \,\,{\text{amp}}\,z = - {\tan ^{ - 1}}\frac{1}{{\sqrt 3 }}. \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section