Question

If $$\left| z \right| = 1\,\,{\text{and }}\omega = \frac{{z - 1}}{{z + 1}}$$    $$\left( {{\text{where }}z \ne - 1} \right),{\text{then Re}}\left( \omega \right)\,\,{\text{is}}$$

A. $$0$$  
B. $$ - \frac{1}{{{{\left| {z + 1} \right|}^2}}}$$
C. $$\left| {\frac{z}{{z + 1}}} \right|.\frac{1}{{{{\left| {z + 1} \right|}^2}}}$$
D. $$\frac{{\sqrt 2 }}{{{{\left| {z + 1} \right|}^2}}}$$
Answer :   $$0$$
Solution :
Given that $$\left| z \right| = 1\,\,{\text{and }}\omega = \frac{{z - 1}}{{z + 1}}\left( {z \ne - 1} \right)$$
Now we know that $$z\overline z = {\left| z \right|^2}$$
$$\eqalign{ & \Rightarrow \,\,z\overline z = 1\,\,\,\,\,\,\,\left( {{\text{for }}\left| z \right| = 1} \right) \cr & \therefore \,\,\omega = \left( {\frac{{z - 1}}{{z + 1}}} \right) \times \frac{{\left( {\overline z + 1} \right)}}{{\left( {\overline z + 1} \right)}} \cr & \,\,\,\,\,\,\,\,\,\, = \frac{{z\overline z + z - \overline z - 1}}{{z\overline z + z + \overline z + 1}} = \frac{{2iy}}{{2 + 2x}} \cr & \left[ {\because \,\,z\overline z = 1\,\,{\text{and taking }}z = x + i\,y\,\,\,{\text{so that}}\,\,z + \overline z = 2x\,\,{\text{and }}z - \overline z = 2i\,y} \right] \cr & \Rightarrow \,\,{\text{Re}}\left( \omega \right) = 0 \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section