Question

If $$z = 1 + i\,\tan \,\alpha \left( { - \pi < \alpha < - \frac{\pi }{2}} \right),$$       then polar form of the complex number $$z$$ is :

A. $$\frac{1}{{\cos \alpha }}\left( {\cos \alpha + i\sin \alpha } \right)$$
B. $$\frac{1}{{ - \cos \,\alpha }}\left[ {\cos \left( {\pi + \alpha } \right) + i\,\sin \left( {\pi + \alpha } \right)} \right]$$  
C. $$\frac{1}{{ \cos \,\alpha }}\left[ {\cos \left( {2\pi + \alpha } \right) + i\,\sin \left( {2\pi + \alpha } \right)} \right]$$
D. None of these
Answer :   $$\frac{1}{{ - \cos \,\alpha }}\left[ {\cos \left( {\pi + \alpha } \right) + i\,\sin \left( {\pi + \alpha } \right)} \right]$$
Solution :
$$\eqalign{ & z = 1 + i\,\tan \,\alpha = r\left( {\cos \theta + i\,\sin \theta } \right) \cr & \Rightarrow \,r\,\cos \,\theta = 1,r\,\sin \,\theta = \tan \,\alpha \cr & \Rightarrow \,{r^2} = {\sec ^2}\alpha \cr & \Rightarrow \,r = \left| {\sec \,\alpha } \right| = \frac{1}{{\left| {\cos \,\alpha } \right|}} \cr & {\text{Since}}, - \pi < \alpha < - \frac{\pi }{2} \cr & \Rightarrow \,\cos \,\alpha \, < 0 \cr & \Rightarrow \,\left| {\cos \,\alpha } \right| = - \cos \,\alpha \cr & \therefore \,r = \frac{1}{{ - \cos \,\alpha }}. \cr & {\text{Further,}}\,\,{\text{we}}\,{\text{get,}} \cr & \cos \,\theta = - \cos \,\alpha = \cos \left( {\pi + \alpha } \right) \cr & {\text{Now}},\, - \pi < \alpha < - \frac{\pi }{2} \cr & \Rightarrow \,\pi - \pi < \pi + \alpha < \pi - \frac{\pi }{2} \cr & \Rightarrow \,0 < \pi + \alpha < \frac{\pi }{2}\,\,\,\,\,\left[ {{\text{Converted to principal value}}} \right] \cr & \therefore \,\cos \,\theta = \cos \left( {\pi + \alpha } \right) \cr & \Rightarrow \,\theta = \pi + \alpha \cr & {\text{Hence}},\,\,z = \frac{1}{{ - \cos \,\alpha }}\left[ {\cos \left( {\pi + \alpha } \right) + i\,\sin \left( {\pi + \alpha } \right)} \right] \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section