Question

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{1 + y}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1$$        then $$y\left( {\frac{\pi }{2}} \right)$$  equals :

A. $$\frac{1}{3}$$  
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$
Answer :   $$\frac{1}{3}$$
Solution :
$$\eqalign{ & \frac{{dy}}{{dx}}\left( {\frac{{2 + \sin \,x}}{{1 + y}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1 \cr & \Rightarrow \frac{{dy}}{{\left( {1 + y} \right)}} = \frac{{ - \cos \,x}}{{2 + \sin \,x}}dx \cr & {\text{Integrating both sides}} \cr & \Rightarrow \ln \left( {1 + y} \right) = - \ln \left( {2 + \sin \,x} \right) + C \cr & {\text{Put}}\,x = 0\,{\text{and}}\,y = 1 \cr & \Rightarrow \ln \left( 2 \right) = - \ln \,2 + C \cr & \Rightarrow C = \ln \,4 \cr & {\text{Put }}x = \frac{\pi }{2} \cr & \ln \left( {1 + y} \right) = - \ln \,3 + \ln \,4 \cr & \Rightarrow \ln \left( {1 + y} \right) = \ln \frac{4}{3} \cr & \Rightarrow y = \frac{1}{3} \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section