Question

If $$y = {\left( {x + \sqrt {1 + {x^2}} } \right)^n},$$     then $$\left( {1 + {x^2} } \right)\frac{{{d^2}y}}{{d{x^2}}} + x\frac{{dy}}{{dx}}{\text{ is :}}$$

A. $${n^2}y$$  
B. $$ - {n^2}y$$
C. $$ - y$$
D. $$2{x^2}y$$
Answer :   $${n^2}y$$
Solution :
$$\eqalign{ & y = {\left( {x + \sqrt {1 + {x^2}} } \right)^n} \cr & \frac{{dy}}{{dx}} = n{\left( {x + \sqrt {1 + {x^2}} } \right)^{n - 1}}\left( {1 + \frac{1}{2}{{\left( {1 + {x^2}} \right)}^{ - \frac{1}{2}}},2x} \right)\,; \cr & \frac{{dy}}{{dx}} = n{\left( {x + \sqrt {1 + {x^2}} } \right)^{n - 1}}\frac{{\left( {\sqrt {1 + {x^2}} + x} \right)}}{{\sqrt {1 + {x^2}} }} = \frac{{n{{\left( {\sqrt {1 + {x^2}} + x} \right)}^n}}}{{\sqrt {1 + {x^2}} }} \cr & {\text{or }}\sqrt {1 + {x^2}} \frac{{dy}}{{dx}} = ny \cr & {\text{or }}\sqrt {1 + {x^2}} {y_1} = ny\,\,\,\,\,\,\,\,\left( {{y_1} = \frac{{dy}}{{dx}}} \right) \cr & {\text{Squaring, }}\left( {1 + {x^2}} \right)y_1^2 = {n^2}{y^2} \cr & {\text{Differentiating,}} \cr & \left( {1 + {x^2}} \right)2{y_1}{y_2} + y_1^2.2x = {n^2}.2y{y_1} \cr & \left( {{\text{Here }}{y_2} = \frac{{{d^2}y}}{{d{x^2}}}} \right) \cr & {\text{or }}\left( {1 + {x^2}} \right){y_2} + x{y_1} = {n^2}y \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section