Question

If $$y = {\tan ^{ - 1}}\left( {\frac{{{2^x}}}{{1 + {2^{2x + 1}}}}} \right),$$     then $$\frac{{dy}}{{dx}}$$  at $$x = 0$$  is :

A. $$\frac{3}{5}\log \,2$$
B. $$\frac{2}{5}\log \,2$$
C. $$ - \frac{3}{2}\log \,2$$
D. $$\log \,2\left( {\frac{{ - 1}}{{10}}} \right)$$  
Answer :   $$\log \,2\left( {\frac{{ - 1}}{{10}}} \right)$$
Solution :
Given expression can be written as
$$\eqalign{ & y = {\tan ^{ - 1}}\left[ {\frac{{{2^x}\left( {2 - 1} \right)}}{{1 + {2^x}{{.2}^{2x + 1}}}}} \right] \cr & \,\,\,\,\, = {\tan ^{ - 1}}\left[ {\frac{{{2^{x + 1}} - {2^x}}}{{1 + {2^x}{{.2}^{2x + 1}}}}} \right] \cr & \,\,\,\,\, = {\tan ^{ - 1}}\left( {{2^{x + 1}}} \right) - {\tan ^{ - 1}}\left( {{2^x}} \right) \cr & \Rightarrow \,\frac{{dy}}{{dx}} = \frac{{{2^{x + 1}}\log \,2}}{{1 + {2^{2\left( {x + 1} \right)}}}} - \frac{{{2^x}\log \,2}}{{1 + {2^{2x}}}} \cr & \therefore \,{\left( {\frac{{dy}}{{dx}}} \right)_{x = 0}} = \left( {\log \,2} \right)\left( {\frac{2}{5} - \frac{1}{2}} \right) = \log \,2\left( { - \frac{1}{{10}}} \right) \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section