Question

If $$y = {\log _{10}}x + {\log _x}10 + {\log _x}x + {\log _{10}}10$$        then what is $${\left( {\frac{{dy}}{{dx}}} \right)_{x = 10}}$$   equal to ?

A. 10
B. 2
C. 1
D. 0  
Answer :   0
Solution :
$$\eqalign{ & y = {\log _{10}}x + {\log _x}10 + {\log _x}x + {\log _{10}}10 \cr & y = {\log _{10}}x + {\log _x}10 + 1 + 1 \cr} $$
Differentiating equation w.r.t. $$x$$
$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{1}{{x\,{{\log }_e}10}} - \frac{1}{{{{\left( {{{\log }_{10}}x} \right)}^2}}}.\frac{1}{{\left( {x\,\log \,10} \right)}} \cr & = \frac{1}{{x\,{{\log }_e}10}}\left[ {1 - \frac{1}{{{{\left( {{{\log }_{10}}x} \right)}^2}}}} \right] \cr & {\left( {\frac{{dy}}{{dx}}} \right)_{x = 10}} = \frac{1}{{10\,{{\log }_e}10}}\left[ {1 - 1} \right] = 0 \cr} $$

\[\left[ \begin{array}{l} {\bf{Note :}}\\ {\log _x}10 = \frac{{{{\log }_{10}}10}}{{{{\log }_{10}}x}} = \frac{1}{{{{\log }_{10}}x}}\\ \frac{d}{{dx}}\left[ {\frac{1}{{{{\log }_{10}}x}}} \right] = - {\left( {{{\log }_{10}}x} \right)^{ - 2}} \times \frac{1}{{x\,{{\log }_e}10}}\\ = - \frac{1}{{{{\left( {{{\log }_{10}}x} \right)}^2}x\,{{\log }_e}10}} \end{array} \right]\]

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section