Question

If $$y = f\left( x \right)$$   makes $$+ve$$  intercept of $$2$$ and $$0$$ unit on $$x$$ and $$y$$ axes and encloses an area of $$\frac{3}{4}$$ square unit with the axes then $$\int\limits_0^2 {x\,f'\left( x \right)dx} $$   is :

A. $$\frac{3}{2}$$
B. $$1$$
C. $$\frac{5}{4}$$
D. $$ - \frac{3}{4}$$  
Answer :   $$ - \frac{3}{4}$$
Solution :
We have $$\int\limits_0^2 {f\left( x \right)dx} = \frac{3}{4}\,;$$
$$\eqalign{ & {\text{Now, }}\int\limits_0^2 {x\,f'\left( x \right)dx} \cr & = x\int\limits_0^2 {f'\left( x \right)dx} - \int\limits_0^2 {f\left( x \right)dx} \cr & = \left[ {x\,f\left( x \right)} \right]_0^2 - \frac{3}{4} \cr & = 2f\left( 2 \right) - \frac{3}{4} \cr & = 0 - \frac{3}{4}\,\,\,\,\,\,\,\left( {\because \,f\left( 2 \right) = 0} \right) \cr & = - \frac{3}{4} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section