Question

If $$y = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {1 + \sin \,x} + \sqrt {1 - \sin \,x} }}{{\sqrt {1 + \sin \,x} - \sqrt {1 - \sin \,x} }}} \right]$$        where $$0 < x < \frac{x}{2},$$   then $$\frac{{dy}}{{dx}}$$  is equal to :

A. $$\frac{1}{2}$$  
B. $$2$$
C. $$\sin \,x + \cos \,x$$
D. $$\sin \,x - \cos \,x$$
Answer :   $$\frac{1}{2}$$
Solution :
$$\eqalign{ & y = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {1 + \sin \,x} + \sqrt {1 - \sin \,x} }}{{\sqrt {1 + \sin \,x} - \sqrt {1 - \sin \,x} }}} \right] \cr & y = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {{{\cos }^2}\frac{x}{2} + {{\sin }^2}\frac{x}{2} + 2\,\sin \frac{x}{2}\cos \frac{x}{2}} + \sqrt {{{\cos }^2}\frac{x}{2} + {{\sin }^2}\frac{x}{2} - 2\,\sin \frac{x}{2}\cos \frac{x}{2}} }}{{\sqrt {{{\cos }^2}\frac{x}{2} + {{\sin }^2}\frac{x}{2} + 2\,\sin \frac{x}{2}\cos \frac{x}{2}} - \sqrt {{{\cos }^2}\frac{x}{2} + {{\sin }^2}\frac{x}{2} - 2\,\sin \frac{x}{2}\cos \frac{x}{2}} }}} \right] \cr & y = {\cot ^{ - 1}}\left[ {\frac{{\sqrt {{{\left( {\cos \frac{x}{2} + \sin \frac{x}{2}} \right)}^2}} + \sqrt {{{\left( {\cos \frac{x}{2} - \sin \frac{x}{2}} \right)}^2}} }}{{\sqrt {{{\left( {\cos \frac{x}{2} + \sin \frac{x}{2}} \right)}^2}} - \sqrt {{{\left( {\cos \frac{x}{2} - \sin \frac{x}{2}} \right)}^2}} }}} \right] \cr & y = {\cot ^{ - 1}}\left[ {\frac{{\cos \frac{x}{2} + \sin \frac{x}{2} + \cos \frac{x}{2} - \sin \frac{x}{2}}}{{\cos \frac{x}{2} + \sin \frac{x}{2} - \cos \frac{x}{2} + \sin \frac{x}{2}}}} \right] \cr & y = {\cot ^{ - 1}}\left[ {\frac{{2\,\cos \frac{x}{2}}}{{2\,\sin \frac{x}{2}}}} \right] \cr & y = {\cot ^{ - 1}}\left( {\cot \frac{x}{2}} \right) \cr & y = \frac{x}{2} \cr & \frac{{dy}}{{dx}} = \frac{1}{2} \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section