Question

If $${y^2} = p\left( x \right)$$   is a polynomial of degree $$3,$$ then what is $$2\frac{d}{{dx}}\left[ {{y^3}\frac{{{d^2}y}}{{d{x^2}}}} \right]$$   equal to ?

A. $$p'\left( x \right)p'''\left( x \right)$$
B. $$p''\left( x \right)p'''\left( x \right)$$
C. $$p\left( x \right)p'''\left( x \right)$$  
D. A constant
Answer :   $$p\left( x \right)p'''\left( x \right)$$
Solution :
Given that $${y^2} = p\left( x \right)$$
Differentiating
$$\eqalign{ & \Rightarrow 2y{y_1} = p'\left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\left[ {{\text{here }}{y_1} = \frac{{dy}}{{dx}}} \right] \cr & \Rightarrow 2{y_1} = \frac{{p'\left( x \right)}}{y} \cr} $$
Differentiating again,
$$\eqalign{ & \Rightarrow 2{y_2} = \frac{{yp''\left( x \right) - p'\left( x \right){y_1}}}{{{y^2}}},\,\,\,\,\,\,\,\,\,\,\left[ {{\text{here }}{y_2} = \frac{{{d^2}y}}{{d{x^2}}}} \right] \cr & \Rightarrow 2{y_2} = \frac{{yp''\left( x \right) - \frac{{p'\left( x \right).p'\left( x \right)}}{{2y}}}}{{{y^2}}} \cr & \Rightarrow 2{y_2} = \frac{{2{y^2}p''\left( x \right) - {{\left( {p'\left( x \right)} \right)}^2}}}{{{2y^3}}} \cr & \Rightarrow 2{y^3}{y_2} = \frac{1}{2}\left[ {2{y^2}p''\left( x \right) - {{\left( {p'\left( x \right)} \right)}^2}} \right] \cr & \Rightarrow 2{y^3}{y_2} = \frac{1}{2}\left[ {2p\left( x \right)p''\left( x \right) - {{\left( {p'\left( x \right)} \right)}^2}} \right] \cr & \Rightarrow 2\frac{d}{{dx}}\left( {{y^3}{y_2}} \right) = \frac{1}{2}\left[ {2p'\left( x \right) + 2p\left( x \right)p'''\left( x \right) - 2p'\left( x \right)p''\left( x \right)} \right] \cr & \Rightarrow 2\frac{d}{{dx}}\left( {{y^3}{y_2}} \right) = p\left( x \right)p'''\left( x \right) \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section