Question

If $$y = \left( {1 + \frac{1}{x}} \right)\left( {1 + \frac{2}{x}} \right)\left( {1 + \frac{3}{x}} \right).....\left( {1 + \frac{n}{x}} \right)$$         and $$x \ne 0,$$  then $$\frac{{dy}}{{dx}}$$  when $$x = - 1$$   is:

A. $$n!$$
B. $$\left( {n - 1} \right)!$$
C. $${\left( { - 1} \right)^n}\left( {n - 1} \right)!$$  
D. $${\left( { - 1} \right)^n}n!$$
Answer :   $${\left( { - 1} \right)^n}\left( {n - 1} \right)!$$
Solution :
$$\eqalign{ & y = \left( {1 + \frac{1}{x}} \right)\left( {1 + \frac{2}{x}} \right)\left( {1 + \frac{3}{x}} \right).....\left( {1 + \frac{n}{x}} \right) \cr & \frac{{dy}}{{dx}} = \left( { - \frac{1}{{{x^2}}}} \right)\left( {1 + \frac{2}{x}} \right)\left( {1 + \frac{3}{x}} \right).....\left( {1 + \frac{n}{x}} \right) + \left( {1 + \frac{1}{x}} \right)\left( { - \frac{2}{{{x^2}}}} \right)\left( {1 + \frac{3}{x}} \right).....\left( {1 + \frac{n}{x}} \right) + ... + \left( {1 + \frac{1}{x}} \right)\left( {1 + \frac{2}{x}} \right)\left( {1 + \frac{3}{x}} \right).....\left( { - \frac{n}{{{x^2}}}} \right) \cr & \because \,\,{\left. {\frac{{dy}}{{dx}}} \right|_{x = - 1}} = \left( { - 1} \right)\left( { - 1} \right)\left( { - 2} \right)\left( { - 3} \right).....\left( {1 - n} \right) \cr & = {\left( { - 1} \right)^n}\left( 1 \right)\left( 2 \right)\left( 3 \right).....\left( {n - 1} \right) \cr & = {\left( { - 1} \right)^n}\left( {n - 1} \right)! \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section