Question
If $$x, y, z$$ are in A.P. and $${\tan ^{ - 1}}x,{\tan ^{ - 1}}y\,\,{\text{and}}\,{\tan ^{ - 1}}z$$ are also in A.P., then
A.
$$x = y = z$$
B.
$$2x = 3y = 6z$$
C.
$$6x = 3y = 2z$$
D.
$$6x = 4y = 3z$$
Answer :
$$x = y = z$$
Solution :
Since, $$x, y, z$$ are in A.P.
⇒ $$2y = x + z$$
Also, we have, $$2\,{\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( z \right)$$
$$\eqalign{
& \Rightarrow {\tan ^{ - 1}}\left( {\frac{{2y}}{{1 - {y^2}}}} \right) = {\tan ^{ - 1}}\left( {\frac{{x + z}}{{1 - xz}}} \right) \cr
& \Rightarrow \,\,\frac{{x + z}}{{1 - {y^2}}} = \frac{{x + z}}{{1 - xz}}\,\,\left( {\because \,\,2y = x + z} \right) \cr
& \Rightarrow \,\,{y^2} = xz\,\,\,{\text{or }}\,x + z = 0 \cr
& \Rightarrow \,\,x = y = z \cr} $$