Question

If $$x, y, z$$  are in A.P. and $${\tan ^{ - 1}}x,{\tan ^{ - 1}}y\,\,{\text{and}}\,{\tan ^{ - 1}}z$$      are also in A.P., then

A. $$x = y = z$$  
B. $$2x = 3y = 6z$$
C. $$6x = 3y = 2z$$
D. $$6x = 4y = 3z$$
Answer :   $$x = y = z$$
Solution :
Since, $$x, y, z$$   are in A.P.
⇒ $$2y = x + z$$
Also, we have, $$2\,{\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( z \right)$$
$$\eqalign{ & \Rightarrow {\tan ^{ - 1}}\left( {\frac{{2y}}{{1 - {y^2}}}} \right) = {\tan ^{ - 1}}\left( {\frac{{x + z}}{{1 - xz}}} \right) \cr & \Rightarrow \,\,\frac{{x + z}}{{1 - {y^2}}} = \frac{{x + z}}{{1 - xz}}\,\,\left( {\because \,\,2y = x + z} \right) \cr & \Rightarrow \,\,{y^2} = xz\,\,\,{\text{or }}\,x + z = 0 \cr & \Rightarrow \,\,x = y = z \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section