If $$x + y$$ and $$y + 3x$$ are two factors of the expression $$\lambda {x^3} - \mu {x^2}y + x{y^2} + {y^3}$$ then the third factor is
A.
$$y + 3x$$
B.
$$y - 3x$$
C.
$$y - x$$
D.
None of these
Answer :
$$y - 3x$$
Solution :
As it is a third-degree homogeneous expression in $$x, y,$$ we have $${y^3} + {y^2}x - \mu y{x^2} + \lambda {x^3}$$
$$\eqalign{
& = \left( {y + x} \right)\left( {y + 3x} \right)\left( {y + mx} \right) \cr
& = {y^3} + \left( {m + 3 + 1} \right){y^2}x + \left( {3 + m + 3m} \right)y{x^2} + 3m{x^3} \cr
& \Rightarrow \,\,1 = m + 4, - \mu = 3 + 4m,\lambda = 3m. \cr} $$
Releted MCQ Question on Algebra >> Quadratic Equation
Releted Question 1
If $$\ell ,m,n$$ are real, $$\ell \ne m,$$ then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$ are