Question

If $${x^{\ln \left( {\frac{y}{z}} \right)}} \cdot {y^{\ln{{\left( {xz} \right)}^2}}} \cdot {z^{\ln\left( {\frac{x}{y}} \right)}} = {y^{4\,\ln\,y}}$$       for any $$x > 1, y > 1$$   and $$z > 1,$$  then which one of the following is correct?

A. $$\ln\,y$$  is the GM of $$\ln\,x, \ln\,x, \ln\,x$$   and $$\ln\,z$$
B. $$\ln\,y$$  is the AM of $$\ln\,x, \ln\,x, \ln\,x$$   and $$\ln\,z$$  
C. $$\ln\,y$$  is the HM of $$\ln\,x, \ln\,x$$  and $$\ln\,z$$
D. $$\ln\,y$$  is the AM of $$\ln, \ln\,x, \ln\,z$$   and $$\ln\,z$$
Answer :   $$\ln\,y$$  is the AM of $$\ln\,x, \ln\,x, \ln\,x$$   and $$\ln\,z$$
Solution :
$$\eqalign{ & {x^{\ln \left( {\frac{y}{z}} \right)}} \cdot {y^{\ln {{\left( {xz} \right)}^2}}} \cdot {z^{\ln \left( {\frac{x}{y}} \right)}} = {y^{4\,\ln \,y}} \cr & \Rightarrow \ln \,\left[ {{x^{\ln \left( {\frac{y}{z}} \right)}}} \right] + \ln \left[ {{y^{\ln {{\left( {xz} \right)}^2}}}} \right] + \ln \left[ {{z^{\ln \left( {\frac{x}{y}} \right)}}} \right] = \ln \left[ {{y^{4\,\ln \,y}}} \right] \cr & \Rightarrow \left[ {\ln \left( {\frac{y}{z}} \right)\ln \,x} \right] + \left[ {2\,\ln \,\left( {xz} \right)\ln \,y} \right] + \left[ {\ln \left( {\frac{x}{y}} \right)\ln \,z} \right] = 4{\left[ {\ln \,y} \right]^2} \cr & \Rightarrow \ln \,x\left[ {\ln \,y - \ln \,z} \right] + 2\,\ln \,y\left[ {\ln \,x + \ln \,z} \right] + \ln \,z\left[ {\ln \,x - \ln \,y} \right] = 4{\left[ {\ln \,y} \right]^2} \cr & \Rightarrow 3\,\ln \,x + \ln \,z = 4\,\ln \,y \cr & \Rightarrow \frac{{\ln \,x + \ln \,x + \ln \,x + \ln \,z}}{4} = \ln \,y \cr} $$
∴ $$\ln\,y$$  is the AM of $$\ln\,x, \ln\,x, \ln\,x\, $$   & $$\ln\,z$$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section