Question

If $$x$$ is real, the maximum value of $$\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}\,\,{\text{is}}$$

A. $$\frac{1}{4}$$
B. $$41$$  
C. $$1$$
D. $$\frac{{17}}{7}$$
Answer :   $$41$$
Solution :
$$\eqalign{ & y = \frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}} \cr & 3{x^2}\left( {y - 1} \right) + 9x\left( {y - 1} \right) + 7y - 17 = 0 \cr & D \geqslant 0\,\,\,\,\,\,\,\,\,\because \,\,x\,\,{\text{is real}} \cr & {\text{81}}{\left( {y - 1} \right)^2} - 4 \times 3\left( {y - 1} \right)\left( {7y - 17} \right) \geqslant 0 \cr & \Rightarrow \,\,\left( {y - 1} \right)\left( {y - 41} \right) \leqslant 0 \cr & \Rightarrow \,\,1 \leqslant y \leqslant 41 \cr & \therefore \,\,{\text{Max value of }}y{\text{ is 41}}{\text{.}} \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section