Question

If $$\phi \left( x \right)$$  is a differentiable function, then the solution of the differential equation $$dy + \left\{ {y\phi '\left( x \right) - \phi \left( x \right)\phi '\left( x \right)} \right\}dx = 0$$       is :

A. $$y = \left\{ {\phi \left( x \right) - 1} \right\} + c{e^{ - \phi \left( x \right)}}$$  
B. $$y\phi \left( x \right) = {\left\{ {\phi \left( x \right)} \right\}^2} + c$$
C. $$y{e^{\phi \left( x \right)}} = \phi \left( x \right){e^{\phi \left( x \right)}} + c$$
D. none of these
Answer :   $$y = \left\{ {\phi \left( x \right) - 1} \right\} + c{e^{ - \phi \left( x \right)}}$$
Solution :
$$\eqalign{ & {\text{We have, }}dy + \left\{ {y\phi '\left( x \right) - \phi \left( x \right)\phi '\left( x \right)} \right\}dx = 0 \cr & \Rightarrow \frac{{dy}}{{dx}} + \phi '\left( x \right).y = \phi \left( x \right)\phi '\left( x \right)......\left( {\text{i}} \right) \cr} $$
This is a linear differential equation with $${\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\phi '\left( x \right)} dx}} = {e^{\phi \left( x \right)}}$$
Multiplying Equation $$\left( {\text{i}} \right)$$ by $$\phi \left( x \right)$$  and integrating, we get
$$\eqalign{ & y{e^{\phi \left( x \right)}} = \int {\phi \left( x \right)\phi '\left( x \right){e^{\phi \left( x \right)}}dx} \cr & \Rightarrow y{e^{\phi \left( x \right)}} = \int {{e^{\phi \left( x \right)}}\phi \left( x \right)\phi '\left( x \right)dx} \cr & \Rightarrow y{e^{\phi \left( x \right)}} = \int {\phi \left( x \right){e^{\phi \left( x \right)}}\phi '\left( x \right)dx} \cr & \Rightarrow y{e^{\phi \left( x \right)}} = \phi \left( x \right){e^{\phi \left( x \right)}} - \int {\phi '\left( x \right){e^{\phi \left( x \right)}}dx} \cr & \Rightarrow y{e^{\phi \left( x \right)}} = \phi \left( x \right){e^{\phi \left( x \right)}} - {e^{\phi \left( x \right)}} + c \cr & \Rightarrow y = \left\{ {\phi \left( x \right) - 1} \right\} + c{e^{ - \phi \left( x \right)}} \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section