Question

If $$x \in \left[ {\frac{\pi }{2},\pi} \right]$$   then $${\cot ^{ - 1}}\left( {\frac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }}} \right) = $$

A. $$\frac{{x - \pi }}{2}$$
B. $$\frac{{\pi - x}}{2}$$  
C. $$\frac{{3\pi - x}}{2}$$
D. None of these
Answer :   $$\frac{{\pi - x}}{2}$$
Solution :
$$\eqalign{ & \sqrt {1 + \sin x} = \sin \frac{x}{2} + \cos \frac{x}{2} \cr & \sqrt {1 - \sin x} = \sin \frac{x}{2} - \cos \frac{x}{2} \cr & \left[ {{\text{for}}\,\frac{\pi }{4} \leqslant \frac{x}{2} \leqslant \frac{\pi }{2}\sin \frac{x}{2} \geqslant \cos \frac{x}{2}} \right] \cr & \therefore {\text{the expression is}} \cr & {\cot ^{ - 1}}\left( {\frac{{\sin \frac{x}{2} + \cos \frac{x}{2} + \sin \frac{x}{2} - \cos \frac{x}{2}}}{{\sin \frac{x}{2} + \cos \frac{x}{2} - \sin \frac{x}{2} + \cos \frac{x}{2}}}} \right) \cr & = {\cot ^{ - 1}}\left( {\tan \frac{x}{2}} \right) = {\cot ^{ - 1}}\cot \left( {\frac{\pi }{2} - \frac{x }{2}} \right) = \frac{{\pi - x}}{2} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section