Question

If $$x\, \in \left( {2n\pi ,\,2n\pi + \pi } \right)$$     then $$\int_0^x {\left[ {\sin \,x} \right]dx,} $$    where $$\left[ x \right] = $$  greatest integer less than or equal to $$x,$$ is equal to :

A. $$ - \pi $$
B. $$ - n\pi $$  
C. 0
D. none of these
Answer :   $$ - n\pi $$
Solution :
$$\eqalign{ & {\text{Here }}2n\pi < x < 2n\pi + \pi \cr & \therefore \int_0^x {\left[ {\sin \,x} \right]dx = } \int_0^{2n\pi } {\left[ {\sin \,x} \right]dx} + \int_{2n\pi }^x {\left[ {\sin \,x} \right]dx} \cr & \int_0^{2n\pi } {\left[ {\sin \,x} \right]} dx = n\int_0^{2\pi } {\left[ {\sin \,x} \right]dx} \,\,\,\,\,\left( {\because \,\left[ {\sin \,\overline {x + 2\pi } } \right] = \left[ {\sin \,x} \right]} \right) \cr & = n\left\{ {\int_0^{\frac{\pi }{2}} {\left[ {\sin \,x} \right]dx} + \int_{\frac{\pi }{2}}^\pi {\left[ {\sin \,x} \right]dx} + \int_\pi ^{\frac{{3\pi }}{2}} {\left[ {\sin \,x} \right]dx} + \int_{\frac{{3\pi }}{2}}^{2\pi } {\left[ {\sin \,x} \right]dx} } \right\} \cr & = n\left\{ {\int_0^{\frac{\pi }{2}} {0\,dx} + \int {0\,dx} + \int_\pi ^{\frac{{3\pi }}{2}} { - 1\,dx} + \int_{\frac{{3\pi }}{2}}^{2\pi } { - 1\,dx} } \right\} \cr & = n\left\{ { - \left( {\frac{{3\pi }}{2} - \pi } \right) - \left( {2\pi - \frac{{3\pi }}{2}} \right)} \right\} \cr & = - n\pi \cr & \int_{2n\pi }^x {\left[ {\sin \,x} \right]dx = } \int_{2n\pi }^x {0\,dx = 0,{\text{ if }}\,2n\pi } < x < 2n\pi + \frac{\pi }{2} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\int_{2n\pi + \frac{\pi }{2}}^x {0\,dx = 0,{\text{ if }}\,2n\pi + \frac{\pi }{2} \leqslant x < 2n\pi + \pi } \cr & \therefore I = - n\pi + 0 = - n\pi \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section