Question

If $${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {c^2},$$      for some $$c > 0$$  then $$\frac{{{{\left[ {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} \right]}^{\frac{3}{2}}}}}{{\frac{{{d^2}y}}{{d{x^2}}}}}$$    is :

A. is a constant dependent on $$a$$
B. is a constant dependent on $$b$$
C. is a constant independent of $$a$$ and $$b$$  
D. $$0$$
Answer :   is a constant independent of $$a$$ and $$b$$
Solution :
$$\eqalign{ & {\text{Given relation is }}{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {c^2},\,c > 0 \cr & {\text{let }}x - a = c\,\cos \,\theta {\text{ and }}y - b = c\,\sin \,\theta \cr & {\text{Therefore,}} \cr & \frac{{dx}}{{d\theta }} = - c\,\sin \,\theta {\text{ and }}\frac{{dy}}{{d\theta }} = c\,\cos \,\theta \cr & \therefore \,\frac{{dy}}{{dx}} = - \cot \,\theta \cr & {\text{Differentiable both sides with respect to}}\,\theta {\text{, we get}} \cr & \frac{d}{{d\theta }}\left( {\frac{{dy}}{{dx}}} \right) = \frac{d}{{d\theta }}\left( { - \cot \,\theta } \right) \cr & {\text{or, }}\frac{d}{{dx}}\left( {\frac{{dy}}{{dx}}} \right)\frac{{dx}}{{d\theta }} = {\text{cose}}{{\text{c}}^2}\theta \cr & {\text{or, }}\frac{{{d^2}y}}{{d{x^2}}}\left( { - c\,\sin \,\theta } \right) = {\text{cose}}{{\text{c}}^2}\theta \cr & {\text{or, }}\frac{{{d^2}y}}{{d{x^2}}} = - \frac{{{\text{cose}}{{\text{c}}^2}\theta }}{c} \cr & \therefore \,\frac{{{{\left[ {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} \right]}^{\frac{3}{2}}}}}{{\frac{{{d^2}y}}{{d{x^2}}}}} = \frac{{c{{\left[ {1 + {{\cot }^2}\theta } \right]}^{\frac{3}{2}}}}}{{ - {\text{cose}}{{\text{c}}^3}\theta }} = \frac{{c{{\left( {{\text{cose}}{{\text{c}}^2}\theta } \right)}^{\frac{3}{2}}}}}{{ - {\text{cose}}{{\text{c}}^3}\theta }} = - c \cr & {\text{which is constant and is independent of }}a{\text{ and }}b. \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section